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Abstract

A computer program (RFAC) has been developed, which allows the automated estimation of residual indices (R-
factors) for protein NMR structures and gives a reliable measure for the quality of the structures. The R-factor
calculation is based on the comparison of experimental and simulated1H NOESY NMR spectra. The approach
comprises an automatic peak picking and a Bayesian analysis of the data, followed by an automated structure
based assignment of the NOESY spectra and the calculation of the R-factor. The major difference to previously
published R-factor definitions is that we take the non-assigned experimental peaks into account as well. The number
and the intensities of the non-assigned signals are an important measure for the quality of an NMR structure. It
turns out that for different problems optimally adapted R-factors should be used which are defined in the paper.
The program allows to compute a global R-factor, different R-factors for the intra residual NOEs, the inter residual
NOEs, sequential NOEs, medium range NOEs and long range NOEs. Furthermore, R-factors can be calculated
for various user defined parts of the molecule or it is possible to obtain a residue-by-residue R-factor. Another
possibility is to sort the R-factors according to their corresponding distances. The summary of all these different
R-factors should allow the user to judge the structure in detail. The new program has been successfully tested on
two medium sized proteins, the cold shock protein (TmCsp) fromTermotoga maritimaand the histidine containing
protein (HPr) fromStaphylococcus carnosus.A comparison with a previously published R-factor definition shows
that our approach is more sensitive to errors in the calculated structure.

Abbreviations: TmCsp, cold shock protein fromThermotoga Maritima; HPr, histidine containing phosphocarrier
protein; NOE, nuclear Overhauser effect; NOESY, nuclear Overhauser effect spectroscopy; RMSD, root mean
square deviation.

Introduction

During the last few years an increasing number of
protein NMR structures has been published. So far
the quality of an NMR structure is mainly judged by
factors such as distance or angle constraint violations,
RMSD values of the obtained set of structures and
the quality of the Ramachandran plot (for an overview
see Laskowski et al., 1998). However, all these meth-
ods do not provide a direct measure of how well the

∗To whom correspondence should be addressed. E-mail: hans-
robert.kalbitzer@biologie.uni-regensburg.de

obtained structures fit the experimental data. RMSD
values, for example, give a measure for the precision
of an NMR structure but they are not necessarily a
measure for the even more important accuracy. In fact,
they can be rather meaningless if the parameters se-
lecting the set of structures to be compared are not
defined carefully: a subset with small RMSD values
can easily be selected if a sufficiently large num-
ber of structures has been calculated. A comparison
between experimental and back-calculated NOESY
spectra leads to an error function similar to the R-
factor used in crystallography (Brünger et al., 1987).
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This NMR R-factor gives a direct value for the qual-
ity of the NMR structure obtained. In the literature
different definitions for NMR R-factors can be found
(Lefevre et al., 1987; Gupta et al., 1988; Brandan
et al., 1990; Nikonowicz et al., 1990; Lane, 1990;
Baleja et al., 1990; Borgias et al., 1990; Borgias and
James, 1990; Bonvin et al., 1991; Gonzalez et al.,
1991; Nilges et al., 1991; Thomas et al., 1991; Mertz
et al., 1992; Brünger et al., 1993; Clore et al., 1993;
Xu et al., 1995; Cullinan et al., 1996). These R-
factors are either used to estimate the quality of the
final structure obtained or for refinement purposes. To
our knowledge, in all of these approaches manually
assigned NOESY peaks are compared to their cor-
responding back calculated counterparts. Therefore,
these R-factor calculations are only possible after the
time consuming manual assignment of the NOESY
spectra has been performed.

However, often it would be useful to estimate the
agreement of a structure model with the experimental
data independent of the completion of the NOESY as-
signment. Typical examples could be the selection of
a proper starting model for structure based assignment
of NOESY spectra or answering the question whether
the structure determined by X-ray crystallography
applies also in solution.

For that, the R-factor estimation should be per-
formed directly from the experimental spectrum and
should be as automated as possible. For such an
automation, we can make use of a number of rou-
tines already implemented by us in AURELIA (Neidig
et al., 1995): two- and three-dimensional NOESY
spectra can be back calculated from a given structure
on the basis of the complete relaxation matrix formal-
ism (Görler and Kalbitzer, 1997; Görler et al., 1999a),
the spectra themselves can be analysed with the auto-
mated routines for peak picking (Neidig et al., 1990),
peak integration (Geyer et al., 1995), and signal and
artefact recognition based on a Bayesian method (Antz
et al., 1995; Schulte et al., 1997).

When the assignment of the NOESY spectra is
fully automated and based only on the test structure in
use, there is no bias caused by the manual assignment
in the R-factor calculation. Especially, if there are
large structural differences between two structures, it
is quite common that for the same experimental signal
several different assignments are possible. However,
a manual assignment would not automatically change
with the current test structure. Therefore, using the au-
tomated assignment procedure, structures from differ-
ent sources can easily be compared to each other and

the structure that explains the experimental data best is
quickly found. In addition, one can take non-assigned
peaks into account as well. These non-assigned peaks
are an important measure for the quality of a structure,
since it should be possible to explain all experimental
peaks using the correct structure.

The automated comparison of the back calculated
spectra with the experimental spectra opens an av-
enue to define different NMR R-factors tuned to the
problem under investigation as it is already routine in
X-ray crystallography. To give the user a more detailed
picture about the quality of a structure, a series of
different R-factors can be developed, like a global R-
factor, different R-factors for the intra residual NOEs,
the inter residual NOEs, sequential NOEs, medium
range NOEs and long range NOEs. Furthermore, R-
factors can be calculated for various user defined parts
of the molecule or it is possible to obtain a residue-
by-residue R-factor. Another possibility is to calculate
separate R-factors for various distance classes. The
summary of all these different R-factors should allow
the user to judge the structure in detail.

To test the program RFAC two medium sized
proteins, the cold shock protein (TmCsp) fromTher-
motoga maritimaand the histidine containing Pro-
tein (HPr) fromStaphylococcus carnosus, were used.
TmCsp is 66 residues in size and its tertiary structure
is formed by a five strandedβ-barrel and oneα-helical
turn (Harrieder, 1998; Kremer et al., to be published).
HPr is 88 residues in size and its structure consists of
threeα-helices and a four stranded anti parallelβ-sheet
(Görler et al., 1999b).

Materials and methods

NMR-samples

The spectra used were recorded from a sample from
1.5 mM Csp from Thermotoga maritimain 92%
H2O/8% D2O (v/v), pH 6.5 and a sample from 4.3 mM
HPr fromStaphylococcus carnosusin 90% H2O/10%
D2O (v/v), pH 7.2.

NMR spectroscopy

The NMR spectra were measured on a Bruker DMX-
800 spectrometer operating at proton frequencies of
800 MHz. NOESY spectra (Jeener et al., 1979) were
recorded with mixing times of 160 ms and 150 ms
for TmCsp and HPr, respectively. Phase-sensitive de-
tection in thet1-direction was obtained using time-
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proportional phase increments (TPPI; Marion and
Wüthrich, 1983). Spectra were recorded at 303 K
and 298 K, respectively. The time domain data set
of TmCsp consisted of 512 real data points in the
t1-direction and 2048 complex data points in the t2-
direction. Data were multiplied by a Gaussian filter
(Ferrige and Lindon, 1978) and baseline-corrected
with the routines contained in the program XWIN-
NMR (Bruker). The final size of the real part of the
spectrum was 1024× 2048 data-points. The time do-
main data set of HPr consisted of 1024 real data points
in the t1-direction and 4096 complex data points in the
t2-direction. The HPr data were filtered and baseline-
corrected as theTmCSP data. The final size of the real
part of the spectrum was 1024× 4096 data points.
The sequential assignments for HPr fromS. carnosus
were taken from Beneicke (1994) and Görler (1998),
the sequential assignments ofTmCsp were taken from
Harrieder (1998).

Software

The NMR data were processed with the program
XWINNMR (Bruker). Peak picking, integration,
Bayesian analysis, back calculation of NOESY spec-
tra, and data inspection were performed with the pro-
gram AURELIA (Bruker). Automated assignment of
the NOESY spectra was done with the program NOE-
ASSIGN (Görler et al., to be published). The different
R-factor definitions are combined into an easy to use
program (RFAC) which is started from the command
line and will either run in a UNIX or PC environ-
ment. It is written in standard ANSI C and can be
obtained from the authors. It will also be implemented
in the graphical environment of a new program part
(AUREMOL) of AURELIA under development which
is aimed to the automated structure determination of
biological macromolecules.

Theoretical considerations and algorithms

The automated R-factor analysis envisaged here con-
sists in principle of two separate parts: (1) the compar-
ison of the experimental NOESY spectrum with the
NOESY spectrum back calculated from a given struc-
ture and (2) the calculation of the R-factor(s) from
the data. In the first part the NOESY spectrum has
to be calculated from a structure using the sequen-
tial assignments; that is, a three-dimensional structure
must be available and the spin systems have to be as-
signed completely or almost completely. Optimally,

the back calculation of the NOESY spectrum is per-
formed on the basis of the complete relaxation matrix
analysis. In our implementation we use the program
RELAX (Görler and Kalbitzer, 1997) which gives a
list of back calculated peaks (B-list) defined by their
positions and intensities (volumes). The experimental
two-dimensional NOESY spectrum is automatically
peak picked and integrated. In addition, the proba-
bilities pi of the peaksi to be true NMR signals and
not noise or artefact peaks are calculated according
to Bayes’ theorem with AURELIA. The probability
valuespi provide a measure how reliable the peaks
i are, their definition has been described previously
(Antz et al., 1995; Schulte et al., 1997). They are
used as weighting factors during the calculation of the
R-factors. The AURELIA output then consists of the
peak positions connected with a list of volumesVi
and a list containing the probability valuespi . This
output is merged to the list of unassigned experimen-
tal peaks calledU-list. This U-list is compared with
theB-list and automatically assigned using the assign-
ment program NOEASSIGN (Görler, 1998; Görler
et al., to be published) which is part of the RELAX
package. Basically the program tries first to opti-
mally adapt the chemical shift values obtained from
the general sequential resonance assignment to the ac-
tual experimental data by a global comparison of the
back calculated spectrum with the experimental spec-
trum. The peak assignment itself is done on local peak
clusters. For each back calculated peak a search is
performed if a corresponding experimental peak exists
in a given search radius (usually 0.01 ppm). If more
than one solution exists the decision is made based on
a maximum likelihood criterion. The resulting list of
assigned experimental peaks is called theA-list. The
U-, B- andA-list are fed into the program RFAC. Here
the U-list can be further reduced by applying a lat-
tice algorithm which can be used if one assumes that
the sequential assignment is true and almost complete.
In this algorithm only non-assigned peaks are taken
into account where at least one back calculated peak
in each dimension can be found within a distance of
0.01 ppm. In this context it is important to note that for
each atom at least the structure independent diagonal
peak is back calculated. In cases where more than one
back calculated peak is assigned to a single experi-
mental peak, the mean volume of the corresponding
back calculated peaks is estimated before the com-
parison is done while the volume of the experimental
peak is divided by the number of corresponding back
calculated peaks.
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In general, the R-factor (residual index) should
measure the agreement between the experimental data
set and the data back calculated from the structure. In
its simplest form it is defined by

R1 =
∑
i∈A

∣∣Iexp,i − sf · Icalc,i
∣∣∑

i∈A

∣∣Iexp,i
∣∣ (1)

and the summation is performed over the data points
i with intensitiesIi in a given setA. With this de-
finition R is 0 if the agreement is perfect and> 0
for all other cases. In NMR spectroscopy and X-ray
crystallography one has to normalise the experimen-
tal data (or the calculated data) since the experimental
values are scaled by a constant factor depending on
not exactly known instrumental and experimental pa-
rameters. The optimal scale factor is found when the
likelihood functionL(sf)adopts its maximum value.

L(sf) =
∏
i∈A

p · (sf · Icalc,i , Iexp,i) (2)

Here, p is the probability that for a calculated value
sf ·Icalc,i the valueIexp,i is measured. From Equation 2
follows for the scale factorsf (Görler, 1998)

sf =
∑
i∈A

Iexp,i · Icalc,i∑
i∈A

I2
calc,i

(3)

The above definition of the R-factor is well suited
for X-ray crystallography but for NMR spectroscopy
several difficulties arise: the exact positions of the
X-ray reflections are determined by the crystal lat-
tice and exactly known. Therefore, the assignments of
the reflection spots are usually unambiguous and only
the intensities of these spots determine the R-factor.
The data setA corresponding to a given resolution
can easily be assigned and used for the calculation
of the R-factor (which is always dependent onA). In
NMR spectroscopy many assignments of experimental
peaks are ambiguous and many experimental peaks
are artefacts. Therefore, in literature only the setA
of manually assigned peaks is used for the calcula-
tion of the R-factor. By application of Equation 1 to
NOESY spectra one can define a measure for the error
(Equation 4) that corresponds to a normalised mean
deviation (Gonzalez et al., 1991). Please note that in
the following for all R-factor calculations the intensi-
ties will be replaced by their corresponding volumes
V.

R2 =

√√√√√√
∑
i∈A
(Vexp,i − sf · Vcalc,i)2∑

i∈A
V 2

exp,i

(4)

Since, unlike in X-ray crystallography, the set of peaks
is incomplete and dominated by the (structurally less
important) strong short range NOEs, R is dominated
also by the volumes of these ‘trivial’ peaks. Therefore,
usuallyV is replaced by a more meaningful function
f(V) which emphasises the more important long range
NOEs. The most common form off(V) is

f (V ) = V α (5)

Thus a more general form of R2 is then given by

R2(α) =

√√√√√√
∑
i∈A
(V α

exp,i − sfα · V α
calc,i)

2∑
i∈A

V 2α
exp,i

(6)

If a f(V) as described in Equation 5 is used the calcula-
tion of the scale factor must be changed accordingly.

sfα =
∑
i∈A
(Vexp,i · Vcalc,i)

α

∑
i∈A

V 2α
calc,i

(7)

As relation (2) this expression fulfills the important
condition that it gives the correct value ofsf in the
error free case where all experimental and back cal-
culated peak volumes differ only by a proportionality
factor. Withα = −1/6, f (V) is in first order propor-
tional to the inter nuclear distance and one obtains the
distance relatedR already defined by Gonzales et al.
(1991).

In the automated R-factor calculation no user in-
terferes who decides (1) which peak in the NOESY
spectrum is a true resonance and (2) if an assignment
of a cross peak is correct. In principle only proba-
bilities pexp,i and pcalc,i exist for cases (1) and (2),
respectively. A method for estimatingpexp,i has al-
ready been developed, an algorithm does not yet exist
for estimatingpcalc,i . Consequently, in the following
we will explicitly make use only of the probabilities
pexp,i . With these probabilities Equations 4 and 6 can
be rewritten as

R3(α) =

√√√√√√
∑
i∈A
(V α

exp,i − sfα · V α
calc,i)

2 · p2
exp,i∑

i∈A
V 2α

exp,i · p2
exp,i

(8)

The above R-factors only estimate how well the as-
signed peaks are explained by the structural model but
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they do not provide a direct measure for the quality
of the structure. For doing this the R-factor should
decrease if more peaks are assigned correctly and ex-
plained by the structural model. A practical expansion
of Equation 8, including the non-assigned peaks can
be defined by

R4(α) =√√√√√√
∑
i∈A

(V α
exp,i−sfα·V α

calc,i )
2·p2

exp,i+
∑
i∈U

(V α
exp,i−sfα ·V α

noise)
2·p2

exp,i∑
i∈A

V 2α
exp,i ·p2

exp,i+
∑
i∈U

V 2α
exp,i ·p2

exp,i

(9)

The first summation is performed over all assigned ex-
perimental peaks contained in theA-list (setA) and the
second summation is performed over the list of unas-
signed peaksU (setU). Vcalc,i are the corresponding
calculated intensities (volumes). For setU the logic
extension of R3 would assign the strongest back cal-
culated cross peak with suitable coordinates asVcalc,i .
However, since forα = −1/6 very small volumes
in R4 dominate the R-value, more stable results can
be expected in this case if a lower limit is set for
Vcalc,i . It is computationally efficient to set Vcalc,i to
a value which just cannot be detected safely in the
experimental spectrum, that is, to the intensityVnoise
of a standard noise peak. In the present implemen-
tation, it is possible to calculate the noise intensity
automatically or a user specified noise intensity can be
used. If the noise volume is calculated by the program
the weakest back calculated intensity where the cor-
responding distance is not greater than the detection
limit is selected. In the automatic routine a detection
limit of 0.5 nm is assumed. Since in R4 (α = −1/6)
the large distances (small volumes) dominate the ex-
pression, the above normalisation of the R-factor leads
to a strong dependence on the exact value of theVnoise
term. This influence can be diminished by inclusion of
Vnoisein the denominator:

R5(α) =√√√√√√
∑
i∈A

(V α
exp,i−sfα·V α

calc,i )
2·p2

exp,i+
∑
i∈U

(V α
exp,i−sfα ·V α

noise)
2·p2

exp,i∑
i∈A

V 2α
exp,i ·p2

exp,i+
∑
i∈U

(V α
exp,i−sfα·V α

noise)
2·p2

exp,i

(10)

In case ofα = 1 the standard noise intensityVnoise
for the R-factors R4 and R5 can be set to 0, since strong
unassigned signals will lead to increasing R-factors in
this equation. With this definition the two R-factors in
Equations 9 and 10 become equal.

The R-factors R4,5 indicate how well the experi-
mental signals are explained by back calculated peaks.

However, one can also define an R-factor to check
how well the back calculated signals are explained by
experimental data. A definition analogous to R5 uses
the non-assigned back calculated signals instead of the
non-assigned experimental peaks:

R6(α) =√√√√√√
∑
i∈A

(V α
exp,i−sfα ·V α

calc,i )
2·p2

exp,i+
∑
i∈U ′

(V α
noise−sfα·V α

calc,i )
2·p2

exp,i∑
i∈A

V 2α
exp,i ·p2

exp,i+
∑
i∈U ′

(V α
noise·p2

exp,i−sfα·V α
calc,i )

2·p2
exp,i

(11)

The summation of the unassigned calculated peaks has
now to be performed over a different set U′ which
contains all back calculated non-assigned peaks with
volumes Vcalc,i ≥ Vnoise.

Instead of the standard noise intensity used in
R4 and R5 one can assign specific volumes to all
experimental peaks which could not be assigned un-
ambiguously by our standard assignment routine. In
this way, a new R-factor (R7) can be defined by us-
ing Equation 8 but performing the summation over all
experimental peaks. The majority of peaks which are
contained in setU are originally not assigned since
the back calculation from the test structure has not
produced a corresponding peak with sufficient inten-
sity. In the first step an assignment for the so far
not assigned signals is done solely on chemical shifts
without use of any structural information. Artefact and
noise peaks are mainly excluded by the use of the
lattice algorithm and by using only non-assigned ex-
perimental peaks with a high peak probability value
pi . If more than one solution is possible the solution
with the largest volume is selected. For increasing the
computational efficiency the volumes of these weak
peaks can be calculated with sufficient accuracy with
the initial slope approximation from the distances.

The above defined R-factors are devised primarily
for judging global properties. It is further possible to
calculate the R-factor for previously specified regions
of the molecule of interest. This allows to judge how
well for example a givenα-helix orβ-strand is defined.
In this case R3 seems to be appropriate where only the
subset of the assigned peaksA is taken into account.

Another possibility using R3 is to calculate a sep-
arate R-factor for each residue. This can be a useful
tool for finding miss-assigned residues. A different
way to look at R-factors is to sort them by distance.
In this case R3 is used again and signals are sorted by
the corresponding distances of the calculated intensi-
ties. We have defined 10 classes starting at 0.15 nm
and each with a range of 0.05 nm. The separation of
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the R-factor in distance classes allows to check if for
example NOEs corresponding to short distances are
over-proportionally violated. And this in turn could
give a hint if the upper and lower bounds in the struc-
ture calculation procedure have been correctly defined.
This will be further explained in the Results section.

Results

2D 1H-NOESY spectra of HPr andTmCsp measured
at 800 MHz were taken for the R-factor calculation.
Since the severe overlap in the aliphatic part of the
spectra made peak assignment and integration rather
prone to errors, only the NH-region (10.6 ppm to
7.3 for TmCsp and 11.3 ppm to 6.2 ppm for HPr)
of each spectrum was used giving 842 (TmCsp) and
1048 (HPr) experimental peaks. ForTmCsp four dif-
ferent test structures were used. First we took the
final NMR structure (original structure), where 920
NOEs, 52 backbone dihedral angles and 29 H-bonds
were used in the structure calculations (Kremer et al.,
2000). The second structure was a homology model
(Welker et al., 1999) that was based on the X-ray and
NMR structures of CspB fromBacillus subtilisand on
the X-ray structure of CspB fromEscherischia coli.
As third structure we took an early NMR structure
where only 89 NOEs but all of the dihedral angles
and the H-bonds were used. As the fourth structure
an energy minimised extended strand was used. For
HPr five different test structures were created. The
first structure was the final NMR structure determined
from 1301 NOEs, 79 backbone coupling constants and
35 H-bonds (Görler et al., 1999b) which had been
energy refined by restrained molecular dynamics in
water at room temperature (original structure). With
this structure 3000, 6000 and 9000 steps of 0.005 ps of
unrestrained molecular dynamics simulations in vacuo
at room temperature were performed to obtain increas-
ingly disordered structures (MD3000, MD6000 and
MD9000 structure). The last test structure for HPr was
again an energy minimised extended strand structure.

The most interesting results obtained with the R-
factors defined above will be discussed in the fol-
lowing. We will start showing the results obtained
using R5 (α = −1/6) and compare it with the sim-
pler R-factor R3 (α = −1/6) which does not use
non-assigned signals. Figure 1 shows the overall R-
factors for the various test structures ofTmCsp and
HPr. For the R-factors in the leftmost set of bars in
Figure 1A and B long-range and non-assigned NOEs

were used using R5 (α = −1/6). The next set of
bars shows the R-factors using only long-range but not
non-assigned signals. In the same way R-factors for
the intra-residual and non-assigned, intra-residual, se-
quential and non-assigned, sequential, medium-range
and non-assigned, medium-range, all inter-residual
and non-assigned and all inter-residual signals were
obtained. Medium-range signals are defined as inter-
residual signals which are arising from amino acids i
and j which are not further apart in the sequence than
4 residues (i< j, j − i≤ 4). Long range signals are de-
fined as the remaining inter-residual signals. As can be
easily seen, the R-factors in the leftmost set of bars are
the most discriminating ones with values ranging from
0.9 to 0.4. This is true for both sets of test structures.
In case of a less defined structure like an extended
strand almost no medium or long-range NOEs are
simulated and therefore all experimental peaks which
correspond to a medium or long range NOE remain
unassigned. The resulting R-factor R5 (α = −1/6) is
in this case mostly influenced by the unassigned peaks
and is approaching a value of one, while for a good
structure only few non-assigned signals remain and
the R-factor is dominated by the differences between
assigned experimental and calculated signals. Since
long-range NOEs are the most sensitive to variations
in the three-dimensional structure it can be expected
that the most discriminating overall R-factor is ob-
tained if for R5 (α = −1/6) only these are used. The
results presented in Figure 1 confirm this expectation.
The R-factors obtained with other subsets of assigned
peaks are less structure dependent (Figure 1). For the
TmCsp test structures a large difference exists between
the extended strand and the structure where only a few
NOEs were used for the structure calculation. This is
due to the fact that the latter structure already pos-
sesses the correct fold; therefore the R-factor drops
considerably. The intra-residual NOEs without non-
assigned signals are not that useful to discriminate
correct from incorrect structures, since a lot of dis-
tances within a residue are more or less fixed by the
geometry of the amino acid. The R-factors for the
sequential NOEs alone are more discriminating since
most sequential NOEs are strongly dependent on the
secondary structure. ForTmCsp the second, third and
fourth structure all possess the correct fold so that
there are only small differences in the R-factors for
the sequential NOEs. Since the secondary structure
elements ofTmCsp are mostlyβ-strands which are in
some regards similar to an extended strand, the dif-
ference between the extended strand and the other test
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Figure 1. Overall R-factors forTmCsp and HPr. A set of four and five different test structures was used forTmCsp and HPr, respectively.
The leftmost set of bars was calculated using R5 (α = −1/6). From the assigned experimental signals only the long-range signals together
with all non assigned signals were used. For the original structure ofTmCsp 282 out of a total of 842 peaks remained non assigned; this
number was further reduced by the lattice algorithm to 148 non assigned peaks. For the extended strand 420 peaks remained non assigned,
which were reduced by the lattice algorithm to 286 peaks. Similar results were obtained for the original structure of HPr where 244 of the
1048 experimental peaks remained non assigned, which were reduced by the lattice algorithm to 156 peaks. For the extended strand 444 peaks
remained non assigned, which were further reduced to 355 peaks. The next set of bars was calculated using R3 (α = −1/6) and only the
long-range NOEs. In the same manner R-factors were calculated using all intra-residual and non assigned, all intra-residual, all sequential and
non assigned, all sequential, all medium-range and non assigned, all inter-residual and non assigned and all inter-residual signals. Whenever
non assigned signals were included R5 was used; otherwise R3 was used.
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structures is not very large. For HPr, which possesses
a higher helical content, the differences between the
various test structures are larger since the secondary
structure elements start to unfold during the room
temperature MD simulations.

Similar trends as described for the sequential
NOEs alone can be observed for the medium- and
long-range signals without non-assigned NOEs in Fig-
ure 1. This is true for both HPr andTmCsp. For
the long-range signals alone it is important to note
that for the less well defined structures only very
few long range signals have been back calculated and
therefore only few experimental signals could be as-
signed to long-range NOEs. The resulting long-range
R-factors are then based only on a few NOEs. This
explains the relatively low long-range R-factors for
the extended strand structures. For the inter-residual
signals of HPr a clear trend is visible with a decreas-
ing R-factor from the extended strand test structures
towards the original structures. The results in Figure 1
show that with the inclusion of the non-assigned NOEs
the R-factors become generally more discriminating.
This demonstrates clearly the importance of the non-
assigned NOEs for the R-factor. In the following, we
will use the long-range NOEs if not stated otherwise.
This selection does not affect the non-assigned peaks
since it is not known to which type one particular non-
assigned NOE belongs. In case of a good structure the
R-factor R5 (α = −1/6) adopts in our test cases values
of around 0.4.

Figure 2 shows R-factors using R3 (α = −1/6)
for the various secondary structure elements ofTmCsp
and HPr. In this case only sequential NOEs were used.
First, there are generally no long- or medium-range
NOEs within secondary structure elements likeβ-
strands. Second, sequential NOEs are more dependent
on the secondary structure than intra-residual NOEs.
These R-factors should indicate how well one particu-
lar secondary structure element is defined. ForTmCsp
and HPr the original structures give in most cases the
lowest R-factors, indicating that there the secondary
structure elements are best defined. This is particularly
clear for theα-helices andβ-strands of HPr.

In Figure 3 separate R-factors were calculated for
each residue using R3 (α = −1/6). In this case
only the inter-residual NOEs were used, while the
intra-residual NOEs were omitted, since they are less
structure dependent. It was not possible to use the
long-range NOEs alone since for several residues no
long-range NOEs were found. To make Figure 3 easier
to read, for bothTmCsp and HPr only data using the

original structure or the extended strand are shown.
For TmCsp the R-factors show no large variations for
both the extended strand and the original structure.
Only for the extended strand structure two dips are vis-
ible around residues 30 and 62. In general the values
for the extended strand structure are higher than those
for the original structure. Much more interesting are
the data obtained for HPr. At the N- and C-termini of
HPr large R-values are obtained for both the extended
strand and the original structure. Since these large R-
factors are obtained for the extended strand and for
the original structure they seem to be structure inde-
pendent. A possible explanation can be highly flexible
ends. This high flexibility could lead to large differ-
ences between observed and back calculated NOEs
since for the back calculation only one general cor-
relation time was assumed. Therefore, it might be
possible to use R-factors to investigate the dynamics
of proteins.

Another way to look at R-factors is to sort them
into distance classes. For Figure 4 R-factors were cal-
culated using R3 (α = −1/6) and grouped into 8
distance classes starting at 0.15 nm. Each class had
a width of 0.05 nm. The corresponding distances were
obtained from the test structures. R-factors were cal-
culated using all inter-residual NOEs. Intra-residual
NOEs were excluded from the calculations since they
are less dependent on structural changes. To make
Figure 4 easier to read a polynomial smoothing was
applied to the data. For most of the test structures of
TmCsp and HPr low R-factors were obtained for dis-
tances in the range between 0.25 nm and 0.5 nm. For
larger and shorter distances the R-factors increased.
However, there is one exception, that is the homol-
ogy model ofTmCsp. In this case there is almost
no distance dependency for the R-factor. It should be
noted that the homology model is based on an X-ray
structure, while the other folded structures are NMR
structures. A possible explanation for the behaviour of
the NMR test cases could be that the upper bounds that
were applied to very strong NOEs during the struc-
ture calculations were too large. This could lead to
high R-values, specially for short distances. For large
distances above 0.5 nm the R-factors for the NMR
test case are increasing again. This could indicate that
not enough long-range NOEs are defined for a perfect
definition of the tertiary structure, since most of the
long range NOEs correspond to larger distances. If the
corresponding upper bounds are linearly increasing
with the NOE distance this could explain the increas-
ing R-factors for larger distances. If one compares
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Figure 2. Secondary structure dependent R-factors forTmCsp and HPr. R-factors were calculated according to R3 (α = −1/6) using only the
sequential NOEs within a specified secondary structure element.
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Figure 3. Sequence dependent R-factors forTmCsp and HPr. R-factors are calculated according to R3 (α = −1/6) using all inter-residual
NOEs for each residue.
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Figure 4. Distance dependent R-factors forTmCsp and HPr. A polynomial smoothing of second order was applied to the data to enhance the
readability of the figure. R-factors are calculated according to R3 (α = −1/6) using only the inter-residual NOEs.
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for TmCsp the R-factors of the original structure with
the R-factors of the ‘few NOE’ structure one can see
that especially for larger distances the R-factors of the
original structure are superior.

Table 1 displays the results using a standard R-
factor definition (R2 (α = −1/6)) that has been pre-
viously defined by Gonzalez et al. (1991). Please note
that all assigned signals were used and that they were
all weighted equally. Using R5 (α = −1/6) in the HPr
test case we had a range in R-factors from 0.97 to 0.44
between the worst and best structure. In comparison,
the R-factors obtained using R2 (α = −1/6) for HPr
only showed a range from 0.23 to 0.16. ForTmCsp the
dispersion in R-factors using R2 (α = −1/6) is even
lower than for HPr. The main reason for this behaviour
is that R2 (α = −1/6) does not take the unassigned
signals into account.

So far intensities have been converted into
distance-like quantities by settingα to −1/6. If one
uses the intensities directly (α = 1) without conver-
sion into distance-like quantities the R-factor will be
dominated by strong NOEs, since a violation of for
example 0.05 nm between the ideal and the model
structure will have a much larger effect on the R-factor
for a NOE corresponding to a short distance than for a
NOE corresponding to a large distance. Table 1 shows
the corresponding results forTmCsp and HPr using R4
(α = 1). Please note that no standard noise intensity
had to be used in this case. As for the other calcu-
lations only long-range and non-assigned NOEs were
used. Here, no clear correlation between the quality
of the structure and the R-factor exists for the four
TmCsp test structures. All R-factors are here close to
one. For the HPr test cases a correlation between struc-
ture and R-factor is visible, although the difference
between the best and worst R-factor is only 0.16. Due
to ther−6 dependency of the NOEs small deviations
between the structure present in solution and the test
structure will lead to large deviations between simu-
lated and experimental intensities. Since the simulated
and experimental intensities themselves are used in
R4 (α = 1), a test structure which deviates only a
bit from the correct solution structure will get a large
R-factor. Only a few strong non-assigned NOEs will
further drastically increase the R-factor.

In R5 the noise volume is also introduced in the
denominator. In principle, in the straightforward gen-
eralisation of the R-factor to non-assigned peaks (R4)
the noise volume would not occur in the denominator.
Table 1 compares the two definitions forTmCsp and
shows that R5 (α = −1/6) is more discriminating than

R4 (α = −1/6), although the general trends are the
same. Again only long-range and non-assigned signals
were used. This discrepancy can be rationalised, if one
thinks about the worst possible test structure where
all experimental peaks remain unassigned. In this case
the R-factor using R5 will approach a value of one.
However, if R4 is used the resulting R-factor will adopt
only a value of around 0.5.

The R-factors discussed so far explain how well a
test structure explains the experimental spectrum. An-
other way to define an R-factor is to look how well the
simulated signals are explained (R6). For the results
shown in Table 1α was set to−1/6 and again only
long-range and non-assigned NOEs were used. A cut-
off of 0.5 nm for the simulated signals was applied
during the calculations. For bothTmCsp and HPr the
R-factors are improving by going from the extended
strand to the original structure. However, the differ-
ence in R-factors between the best and worst structure
is only 0.14 and 0.18 forTmCsp and HPr, respec-
tively. In comparison to R5 (α = −1/6) the results
obtained by R6 (α = −1/6) are less discriminating
and the R-factors are quite high. These results can be
explained by a relatively high number of simulated
peaks for which no corresponding experimental peaks
were found. For example, this loss of experimental
peaks can be caused by fast exchanging HN-protons
and conformational flexibility. On the other hand, it
could mean that the structures calculated from the
assigned NOEs do not use the existing information
optimally, that is, that the non-NOEs should be used
for the structure calculation.

Instead of using the standard noise intensity in R4
and R5 it is possible to assign the non-assigned sig-
nals solely on the basis of chemical shifts and assign
specific volumes to these peaks (R7 (α = −1/6)). To
make sure that no noise or artefact signals remain in
the group of unassigned signals only signals out of this
group were accepted with probability values greater
than 0.98. Table 1 shows the resulting R-factors for
TmCsp and HPr. In this case best results were obtained
when all assigned and non-assigned signals were used.
In general the R-factors obtained in this test case are
somewhat less discriminating and larger than the R-
factors obtained using R5 (α = −1/6). A detailed
analysis of the data shows that mainly a few non-
assigned peaks that correspond to large distances in
the test structure are responsible for this behaviour.
These are mostly artefact peaks originating for exam-
ple from the water signal, that were neither removed
by the lattice algorithm nor by the probability value
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Table 1. Various R-factors for TmCsp and HPr

R2 (α = −1/6)a R4 (α = 1)b R4 (α = −1/6)b R5 (α = −1/6)b R6 (α = −1/6)b R7 (α = −1/6)c RMSD[nm]d

TmCsp
Extended 0.21 0.99 0.56 0.92 0.99 0.96 3.14

Few NOEs 0.20 1.00 0.45 0.51 0.90 0.56 0.36

Homology model 0.19 0.96 0.41 0.45 0.89 0.51 0.24

Original 0.19 0.99 0.38 0.43 0.85 0.53 0.09

HPr
Extended 0.23 0.99 0.53 0.93 0.99 0.98 3.95

MD9000 0.22 0.99 0.44 0.77 0.94 0.80 0.59

MD6000 0.21 0.98 0.39 0.59 0.89 0.74 0.37

MD3000 0.19 0.94 0.39 0.48 0.84 0.67 0.18

Original 0.16 0.83 0.39 0.44 0.81 0.62 0.11

aFor R2 all assigned signals were used.
bFor R4, R5 and R6 long-range and non assigned NOEs were used.
cWhen R-factors according to R7 were calculated best results were obtained when all assigned and non assigned signals were used.
dThe pairwise RMSD values for the Cα atoms were calculated between the original and the other test structures. The RMSD value for the
original structure was obtained using a bundle of five final solution structures. In this case the average RMSD to the mean structure was
calculated.

filtering. The errors introduced by these peaks increase
as the volume of the structure increases. Therefore
the resulting R-factors are biased by the volume of
the structure. This can be dangerous, since there is
no general correlation between accuracy and volume
of a structure. However, this R-factor definition has
the benefit that it is independent of a standard noise
level. On the other hand, it has some limitations, as
mentioned above.

We have investigated if there is a correlation be-
tween R-factors and RMSD values. Pair-wise RMSD
values for the Cα atoms were calculated for each test
set between the original and the other structures. These
RMSD values should be a measure for the accuracy
of a selected structure. The RMSD values for the
original structure were calculated using a bundle of
5 final accepted solution structures and the average
RMSD value to the mean structure was determined.
This RMSD value is a measure for the precision of the
original structure. Table 1 displays the corresponding
R-factors and RMSD values. A correlation between
RMSD value and R-factor is clearly visible as with
increasing R-factors the RMSD values increase as
well. The observed correlation is especially clear if R-
factors were calculated using R5 (α = −1/6). This
is in line with the expected correlation between the
R-factor and the accuracy of a structure.

Discussion

The R-factor determination described here has two
new aspects compared to already published work in
this field, i.e. (1) the automated assignment of NOE
cross peaks and (2) the definition of new forms of
R-factors which include e.g. the non-assigned exper-
imental or back-calculated peaks. The two parts are
in principle independent from each other, that is, the
automated routines for the cross peak assignment can
be used in conjunction with any published (or to be
published) definition of an R-factor. The automated
assignment of the experimental spectrum is based on
already published routines for automated peak picking
(Neidig et al., 1990), automated integration (Geyer
et al., 1995), automated signal and artefact recognition
(Antz et al., 1995; Schulte et al., 1997) and the back
calculation of the NOE spectra using the complete
relaxation matrix formalism (Görler and Kalbitzer,
1997; Görler et al., 1999a). It assumes that the ba-
sic assignments contained in an assignment table are
correct (including the stereo specific assignments) and
only identifies the cross peaks on the basis of these as-
signments. It allows only small variations of chemical
shifts contained in the chemical shift table and adapts
them to the experimental spectrum. This is in contrast
to other programs which try an automated assignment
of cross peaks for structure calculations (for a review
see Moseley and Montelione, 1999). In our case the
structure is given and only its quality has to be as-
sessed. Therefore the assignment problem concerning
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the experimental cross peaks is strongly reduced but
still not trivial, since overlap of cross peaks, small tem-
perature shifts and the occurrence of non-recognised
artefact (or impurity) peaks may lead to errors. How-
ever, the maximum likelihood method developed by us
(Görler, 1998) works sufficiently well for this purpose.
For R7 the assignment strategy for the non-assigned
peaks is similar to the assignment strategy used within
the programs ARIA and NOAH (Mumenthaler et al.,
1995; Nilges et al., 1997). If there are several assign-
ment possibilities for one experimental peak ARIA
uses them all. However, in the following structure cal-
culation the possibility that corresponds to the shortest
distance is weighted the most. Within NOAH all as-
signment possibilities are used and incorrect ones are
removed by violation analysis. In our case we select
the one that corresponds to the largest volume (short-
est distance), which is in some regards similar to the
weighting in ARIA.

Part (2) comprises the definition of R-factors which
we have tested on two different proteins. From the re-
sults it is clear how dependent the obtained R-values
are on the used form of the R-factor. One should
select the most discriminating R-factor to have the
most sensible measure for the quality of a structure.
The best results in this regard are found by using
R5 (α = −1/6) and applying it only to the long-
range and non-assigned NOEs. A comparison with
the results obtained using R3 (α = −1/6) shows the
importance of the non-assigned NOEs, since the re-
sults obtained using R3 are much less discriminating.
This is true independent of the used subset of atoms
(intra-residual, sequential, medium-range, long-range
and inter-residual). The results displayed in Table 1
show that there is a correlation between R-factors and
the accuracy of a structure. If one is interested in a
more detailed analysis of a structure one can calculate
separate R-factors for the various secondary structure
elements (Figure 2). This should be particularly useful
in the beginning of the structure calculation process
when the user is interested in the quality of its start-
ing model. One possibility is to test if theα-helices
andβ-strands adopt the correct length. For example, if
one calculates an R-factor for a specificα-helix in the
model structure the R-factor should reflect if the whole
region is reallyα-helical. Since the R-factor calcula-
tion and with it the assignment of the NOESY spectra
is automated, these calculations can be performed as
soon as the sequential assignment is completed. For
example, at this stage it is possible to test different
model structures and to select the one with the lowest

R-factors as a starting structure for the NOE assign-
ment process. It should be noted that the concept of
residue specific R-factors as displayed in Figure 3
has been used previously (Edmondson et al., 1995).
However, Figure 3 shows for HPr a good example
how R-factors might be used as a tool to investigate
the dynamics of proteins. This might be particularly
useful in cases where no15N labelling is available
and the standard15N T1, T2 and1H-15N hetero NOE
measurements cannot be performed. Figure 3 clearly
shows that a rigid sphere model which was assumed
for the back calculation of the NOEs is not correct for
all parts of the HPr molecule, while it explains the
TmCsp structure fairly well. For HPr especially the
terminal ends seem to be quite flexible. In Figure 4
R-factors were grouped into distance classes. This fig-
ure gives an indication how important the NOE upper
bounds can be for the structure calculations, especially
for short and long distances. We have tried to find
different R-factor definitions that do not use a ‘stan-
dard’ noise level (R3 and R7). However, the results
obtained using one of these equations proved to be less
satisfactory for calculating an R-factor for the whole
molecule. When using these factors generally the same
trends were observed as with R5. However, R5 gave by
far the most structurally sensitive R-factors. R6 defines
an R-factor that explains how well the back calculated
signals are explained. The results show that this R-
factor definition is very sensitive to the completeness
of the experimental spectrum. For example, missing
experimental peaks due to solvent or conformational
exchange will lead to an increase of the R-factor. A
comparison of the results obtained using R5 and a pre-
viously published R-factor R2 (α = −1/6) (Gonzalez
et al., 1991) clearly shows that our R-factor defini-
tion is more sensitive to structural differences and is
therefore well suited to judge the quality of a protein
structure.

In summary, R5 is best suited for a general de-
finition of the R-factor while R3 is well suited for
local R-factors. In all R-factors used, the coefficient
α = −1/6, that also has been previously used for
R-factor definitions (Gonzalez et al., 1991; Thomas
et al., 1991; Brünger et al., 1993; Clore et al., 1993),
is superior toα = 1. The R-factor program RFAC
should be a useful tool for assessing the quality of a
structure. Although tested here on protein structures, it
can be applied to any macromolecular structure. Since
the whole process is automated, different structures
can be compared in a very fast manner.
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